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Entropies such as the Shannon�/Wiener and Gini�/Simpson
indices are not themselves diversities. Conversion of these to
effective number of species is the key to a unified and intuitive
interpretation of diversity. Effective numbers of species derived
from standard diversity indices share a common set of intuitive
mathematical properties and behave as one would expect of a
diversity, while raw indices do not. Contrary to Keylock, the lack
of concavity of effective numbers of species is irrelevant as long as
they are used as transformations of concave alpha, beta, and
gamma entropies. The practical importance of this transformation
is demonstrated by applying it to a popular community similarity
measure based on raw diversity indices or entropies. The standard
similarity measure based on untransformed indices is shown to
give misleading results, but transforming the indices or entropies
to effective numbers of species produces a stable, easily
interpreted, sensitive general similarity measure. General
overlap measures derived from this transformed similarity
measure yield the Jaccard index, Sørensen index, Horn index of
overlap, and the Morisita�/Horn index as special cases.

What is diversity?

The plethora of diversity indices and their conflicting

behavior has led some authors (Hurlbert 1971) to

conclude that the concept of diversity is meaningless.

Diversity is not meaningless but has been confounded

with the indices used to measure it; a diversity index is

not necessarily itself a ‘‘diversity’’. The radius of a sphere

is an index of its volume but is not itself the volume, and

using the radius in place of the volume in engineering

equations will give dangerously misleading results. This

is what biologists have done with diversity indices. The

most common diversity measure, the Shannon�/Wiener

index, is an entropy, giving the uncertainty in the

outcome of a sampling process. When it is calculated

using logarithms to the base two, it is the minimum

number of yes/no questions required, on the average, to

determine the identity of a sampled species; it is the

mean depth of a maximally-efficient dichotamous key.

Tothmeresz (1995), Ricotta (2003) and Keylock (2005)

have shown that most other nonparametric diversity

indices are also generalized entropies. Entropies are

reasonable indices of diversity, but this is no reason to

claim that entropy is diversity.

In physics, economics, information theory, and other

sciences, the distinction between the entropy of a system

and the effective number of elements of a system is

fundamental. It is this latter number, not the entropy,

that is at the core of the concept of diversity in biology.

Consider the simplest case, a community consisting of S

equally-common species. In virtually any biological

context, it is reasonable to say that a community with

sixteen equally-common species is twice as diverse as a

community with eight equally-common species. Thus,

when all species are equally common, diversity should be

proportional to the number of species. It is natural to set

the proportionality constant to unity, so that a commu-

nity with eight equally-common species has a diversity of

eight species and a community with sixteen equally-

common species has a diversity of sixteen species. The

difference in behavior between an entropy and a diversity

is clear here. The Shannon entropy �a
S

i�1pi logbpi

(calculated using base b�/2 for the logarithm) is 3.0

for the first community and 4.0 for the second commu-

nity; the entropy of the second community is not twice

that of the first. (For any choice of base b, if the entropy

of the first community is x, the entropy of the second

community is x�/logb 2.) The entropy gives the uncer-

tainty in the species identity of a sample, not the number

of species in the community.
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This does not mean that Shannon entropy is a poor

index of diversity; on the contrary, it is the most

profound and useful of all diversity indices, but its value

gives the uncertainty rather than the diversity. If it is

chosen as a diversity index, then all communities that

share a particular value of Shannon entropy are

equivalent with respect to their diversity (according to

this index). A diversity index thus creates equivalence

classes among communities. In each of these equivalence

classes there is one community whose species are all

equally common. The intuitive definition of diversity

just given applies to that community, showing that its

diversity is equal to its number of species; all other

communities in the equivalence class must also have this

same diversity.

Finding the diversity of a community thus reduces to

the problem of finding an equivalent community (one

that has the same value of the diversity index as the

community in question) composed of equally-common

species. This is a matter of simple algebra: calculate the

diversity index for D equally-common species (each

species therefore with a frequency of 1/D), set the

resulting expression equal to the actual value of the

diversity index, and solve that equation for D. This value

of D is the diversity of the community according to the

chosen diversity index. Table 1 gives the results of this

algorithm for some common diversity indices. The

number D has been called the ‘‘effective number of

species’’ by MacArthur (1965); in physics it is the

number of states associated with a given entropy, and

in economics it is called the ‘‘numbers equivalent’’ of a

diversity measure (Patil and Taillee 1982). I will refer to

it simply as the diversity.

Diversity of order q

Most nonparametric diversity indices used in the

sciences (including all generalized entropies used in

biology) are monotonic functions of a
S

i�1p
q
i , or limits

of such functions as q approaches unity. These include

species richness, Shannon entropy, all Simpson mea-

sures, all Renyi entropies (Renyi 1961, Pielou 1975), all

HCDT or ‘‘Tsallis’’ entropies (Keylock 2005; our termi-

nology follows Czachor and Naudts 2002), and many

others. All such measures yield a single expression for

diversity when the algorithm of the preceding section is

applied to them:

qD�

�XS

i�1

p
q
i

�1=(1�q)

(1)

[Proof 1] These are often called ‘‘Hill numbers’’, but they

are more general than Hill’s (1973) derivation suggests.

The exponent and superscript q may be called the

‘‘order’’ of the diversity; for all indices that are functions

of a
S

i�1p
q
i , the true diversity depends only on the value of

q and the species frequencies, and not on the functional

form of the index. This means that when calculating the

diversity of a single community, it does not matter

whether one uses Simpson concentration, inverse Simp-

son concentration, the Gini�/Simpson index, the second-

order Renyi entropy, or the Hurlbert�/Smith�/Grassle

index with m�/2; all give the same diversity:

2D�1=

�XS

i�1

p2
i

�
(2)

The superscript 2 on the diversity indicates that this is a

diversity of order 2.

The order of a diversity indicates its sensitivity to

common and rare species. The diversity of order zero

(q�/0) is completely insensitive to species frequencies

and is better known as species richness. All values of q

less than unity give diversities that disproportionately

favor rare species, while all values of q greater than unity

disproportionately favor the most common species

(Tsallis 2001, Keylock 2005). The critical point that

weighs all species by their frequency, without favoring

Table 1. Conversion of common indices to true diversities.

Index x: Diversity in terms of x: Diversity in terms of pi:

Species richness x�
PS

i�1

p0
i x

PS

i�1

p0
i

Shannon entropy x��
PS

i�1

pi ln pi exp(x) exp

�
�

PS

i�1

pi ln pi

�

Simpson concentration x�
PS

i�1

p2
i 1/x 1=

PS

i�1

p2
i

Gini�/Simpson index x�1�
PS

i�1

p2
i 1/(1�/x) 1=

PS

i�1

p2
i

HCDT entropy x�

�
1�

Ps

i�1

pq
i

�
=(q�1) [(1�/ (q�/1)x)]1/(1�q)

�PS

i�1

pq
i

�1=(1�q)

Renyi entropy x�

�
�ln

Ps

i�1

p
q
i

�
=(q�1) exp(x)

�PS

i�1

p
q
i

�1=(1�q)
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either common or rare species, occurs when q�/1; Eq. 1

is undefined at q�/1 but its limit exists and equals

1D�exp

�
�

XS

i�1

pi ln pi

�
�exp(H) (3)

This is the exponential of Shannon entropy, but it arises

naturally here without any reference to information

theory. The central role this quantity plays in biology,

information theory, physics, and mathematics is not a

matter of definition, prejudice, or fashion (as some

biologists have claimed) but rather a consequence of its

unique ability to weigh elements precisely by their

frequency, without disproportionately favoring either

rare or common elements. Biologists would have dis-

covered it and used it as their main diversity index even if

information theory did not exist.

Equation 1 has the properties intuitively expected of a

diversity. For all values of q it always gives exactly S when

applied to a community with S equally-common species.

For all values of q it also possess the ‘‘doubling’’ property

introduced by Hill (1973): suppose we have a community

of S species with arbitrary species frequencies

p1, . . . pi, . . . ps, with diversity qD. Suppose we divide

each species into two equal groups, say males and

females, and we treat each group as a separate ‘‘species’’.

Intuitively, we have doubled the diversity of the commu-

nity by this reclassification, and indeed the diversity of

the doubled community calculated according to Eq. 1 is

always 2�/
qD regardless of the values of the pi. [Proof 2]

Alpha, beta, and gamma diversities

The Shannon entropies of multiple communities can be

averaged to give what is known in information theory as

the ‘‘conditional entropy’’, Ha, of the set of commu-

nities. Because Shannon entropy is a concave function,

Ha is always less than or equal to the gamma entropy Hg,

the entropy of the pooled communities (Shannon 1948,

Lande 1996). Though Ha is often called the ‘‘alpha

diversity’’ in biology, it is of course really an entropy. It

can be converted to the true alpha diversity by Eq. 3:
1Da�/exp(Ha). Likewise the amount of information

provided by knowledge of the sample location is often

called the beta diversity in biology but is actually an

entropy. Like the alpha entropy, it can be converted to

the true beta diversity by Eq. 3. The same tranformation

also converts gamma entropy to true gamma diversity.

The relation between the Shannon alpha, beta, and

gamma entropy follows directly from information the-

ory:

Ha�Hb�Hg

By converting both sides of this equation to true

diversities via Eq. 3, the relation between alpha, beta,

and gamma diversity is obtained:

exp(Ha�Hb)�exp(Hg) (5a)

so

(exp(Ha))(exp(Hb))�exp(Hg) (5b)

or

(alpha diversity)(beta diversity)�(gamma diversity)

(5c)

Shannon or order 1 diversity thus necessarily follows

Whittaker’s (1972) multiplicative law. The minimum

possible beta diversity is unity, which occurs when all

communities are identical. The maximum possible beta

diversity is N, the number of communities; this occurs

when all N communities are completely distinct and

equally weighted. Alpha and beta diversity are indepen-

dent of each other regardless of the community weights.

Keylock (2005), following Lande (1996), has criticized

the use of diversities (Hill numbers) because they are

often not concave functions, and so alpha diversity

might sometimes be greater than gamma diversity. This

would be a valid criticism if we averaged individual

diversities directly (w1D(H1)�/w2D(H2)�/. . .) to obtain

the alpha diversity; an alpha diversity calculated this way

would indeed sometimes exceed the gamma diversity.

However, there is no theoretical justification for aver-

aging diversities in this way. Diversities are not sub-

stitutes for entropies but rather transformations of them

after all entropic calculations (such as calculation of the

alpha entropy) have been done. The logic is analogous to

working with variances when their mathematical proper-

ties (such as additivity) are useful, and then converting

the result to a standard deviation at the end for

comparison with experiment. Let H stand for any

generalized entropy or diversity index, and let D(H) be

the function that transforms H into a true diversity. If

the underlying entropies are concave, then Ha will be less

than or equal to Hg (Lande 1996). Hence if the

transformation function D(H) is monotonically increas-

ing, the transformed alpha entropy D(Ha) will be less

than or equal to the transformed gamma entropy D(Hg).

In the Shannon case, the function that converts entropy

H to diversity D is the exponential function, which is

monotonically increasing: if x5/y, then exp(x)5/exp(y).

Because Shannon entropy is concave, Ha is always less

than or equal to Hg, and so it follows that exp(Ha) is

always less than or equal to exp(Hg). Shannon alpha

diversity is always less than or equal to Shannon gamma

diversity, and the concavity of D(H) plays no role in this.

The other commonly-used concave entropy is the Gini�/

Simpson index. If one defines the alpha Gini�/Simpson

index Ha of a set of communities as the average of the

Gini�/Simpson indices of the individual communities (as

is traditional in biology, though see below), then by

concavity Ha is always less than or equal to Hg (Lande

1996). This index is transformed to a true diversity by the

function 1/(1�/H) (which is obtained by the algorithm
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described in the first section). The Gini�/Simpson index

always lies within the interval [0, 1), and in this domain the

transformation function 1/(1�/H) is a monotonically

increasing function of H. Hence if x and y are numbers

in the range [0, 1) and if x is less than or equal to y, 1/(1�/x)

must be less than or equal to 1/(1�/y). Since Ha is always

less than or equal to Hg, the alpha diversity 1/(1�/Ha) will

therefore always be less than or equal to the gamma

diversity 1/(1�/Hg). The concavity of the transformation

function is irrelevant.

It is important to note that the alpha (or conditional)

entropy is not uniquely defined for the Gini�/Simpson

index or other non-Shannon diversity measures (Taneja

1989, Yamano 2001). In physics, for example, the

currently accepted definition of the conditional

Gini�/Simpson index is not w1H1�/w2H2�/ . . . but

[(w1
2)H1�/(w2

2)H2�/. . .]/[w1
2�/w2

2�/. . .] (Tsallis et al.

1998, Abe and Rajagopal 2001). There are many other

definitions in the literature (Taneja 1989). Each satisfies

a different subset of the theorems which apply to their

Shannon counterpart, and no definition satisfies them

all. The traditional biological definition of Gini�/Simp-

son alpha entropy agrees with the current physics

definition only when community weights are equal.

These ambiguities apply also to the definition of beta

for non-Shannon measures. Until these issues are

resolved at a deeper level, one should avoid the use of

the Gini�/Simpson index to calculate alpha and beta for

unequally-weighted samples or communities. The issues

involved are explained in more detail in Appendix 2. In

the following applications we restrict ourselves to the

case of equal weights.

Application

The distinction between an entropy and a true diversity

is not merely semantic; confusion between entropy and

diversity has serious practical consequences. Entropies

and other diversity indices have a wide variety of ranges

and behaviors; if applied to a system of S equally

common species, some vary as S, some as log S, some

as 1/S, some as 1�/1/S, etc. Some have unlimited ranges

while others are always less than unity. A general

formula or equation designed to accept raw indices is

likely to give reasonable results for some of these but not

for others. By calling all of these indices ‘‘diversities’’ and

treating them as if they were interchangeable in formulas

or analyses requiring diversities, we will often generate

misleading results. Converting indices to true diversities

gives them a set of common behaviors and properties,

permitting the development of truly general index-

independent formulas and analytical techniques.

Consider for example a popular general similarity or

homogeneity measure (Lande 1996, Veech et al. 2002)

based on raw diversity indices:

L�alpha diversity index=gama diversity index

�Ha=Hg (6)

(H here refers to any generalized entropy or diversity

index, not necessarily the Shannon entropy.) This

similarity measure is designed to be used with species

richness, Shannon entropy, the Gini�/Simpson index, or

any other concave measure. It is intended to give the

proportion of total regional ‘‘diversity’’ contained in the

average single community, but it does not distinguish

entropies from diversities, and this causes problems.

When applied to N equally-weighted communities it

gives sensible results when used with species richness

(which is after all a true diversity, the diversity of order

zero). In this case the similarity measure has awell-defined

maximum of 1.0 when the communities are all identical,

and awell-defined minimum of 1/N when the communities

are completely dissimilar. However, when this same

similarity measure is used with Shannon entropy or the

Gini�/Simpson index, its value approaches unity as

community diversity becomes large, no matter how

dissimilar the communities! [Proof 3] Whittaker (1972)

first noted this problem in ratios of gamma and alpha

Shannon entropies. The inflation of similarity arises

because most entropies, including Shannon entropy and

the Gini-Simpson index, have a nearly flat slope when

diversity is high; if a set of communities is very diverse, Ha
and Hg will therefore be nearly equal, and as alpha

becomes large their ratio will be approach unity regardless

of their similarity. This makes the measure uninterpretable

as a summary statistic; a similarity of 0.999 using the

Gini�/Simpson index in Eq. 6 may mean communities are

nearly identical, may mean they are moderately similar, or

may mean they are completely distinct.

This problem can be avoided by converting the

entropies to true diversities before taking their ratio,

obtaining:

M�qD(Ha)=
qD(Hg) (7)

where qD(H) means the diversity associated with the

entropy H. The reciprocal of this formula has been

proposed as a measure of beta diversity for the Shannon

case (MacArthur 1965), and for the Gini�/Simpson index

(Olszewski 2005). The conversion to true diversities puts

these diversity indices on a common footing, eliminating

the erratic behavior of Eq. 6 when used with different

indices. Most importantly, because both alpha and

gamma diversities have the ‘‘doubling’’ property de-

scribed earlier, their ratio is immune to the false inflation

of similarity which is characteristic of a ratio of

entropies. Unlike a ratio of entropies, it has a fixed

minimum value (indicating complete dissimilarity) of

1/N for N equally-weighted communities, whether used

with species richness, Shannon entropy, or the Gini�/

Simpson index, and regardless of the alpha diversity of

the communities. [Proof 4] Thus we can easily tell

whether a set of N equally-weighted communities is
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distinct and we can meaningfully compare the similarity

values based on different indices and between different

sets of N communities (whose alpha diversities may

differ).

The difference between the ratio of entropies and the

ratio of true diversities can be seen by applying each of

them to two imaginary equally-weighted bird commu-

nities with no species in common: a community in Costa

Rica and one in Indonesia, each with 50 equally common

bird species. Since no species are shared between Costa

Rica and Indonesia, the pooled diversity is 100 equally-

common species. Equation 6 gives the proportion of total

pooled ‘‘diversity’’ contained in the average community as

0.5 using species richness, 0.85 using the Shannon entropy,

and 0.99 using the Gini�/Simpson index. Inflation is

apparent in the latter two values, which are close to unity

(which would indicate maximal similarity) eventhough the

communities have no similarity at all. Furthermore, the

similarity values vary erratically depending on the diver-

sity index used, even though the species probabilities in the

individual and pooled communities are perfectly uniform,

with no dominance or concentration effects that could

account for the differences. Since the value that indicates

complete dissimilarity depends in a complex way on the

alpha diversity and on the index used, these similarity

values cannot be directly compared between different sets

of communities and cannot be easily interpreted.

In contrast the similarity of these two completely

distinct communities using true diversities, Eq. 7, is 0.50

for all these diversity measures, reflecting the fact that if

two communities are completely distinct and equally-

weighted the average community must contain half the

total pooled diversity. When two equally-weighted com-

munities are completely dissimilar, we would obtain this

same value of 0.50 even if the communities each had very

different numbers of species, and even if each species were

not equally-common, and no matter whether we used

diversities calculated from species richness, Shannon en-

tropy, or the Gini�/Simpson index. The measure accurately

and robustly indicates the degree of similarity without

confounding this with total diversity.

The ratio of true diversities not only has superior

mathematical properties but is also more biologically

meaningful than the ratio of entropies. This can be best

demonstrated on a real two-community system, the

canopy and understory fruit-feeding butterfly commu-

nities of a South American rain forest (DeVries and

Walla 2001). The published raw data set (11696 indivi-

duals) is large enough to eliminate bias in the estimates of

diversity measures, and the statistical weights of the two

communities are within 1% of equality, making it an

ideal test. The distinctness of the canopy versus unders-

tory butterfly communities is obvious from inspection of

the published raw data (rearranged here as Table 2); on

the average a species is more than 30 times more common

in its preferred community than in its nonpreferred

community, and the difference reaches or exceeds a

significance level of 0.001 for 63 of the 74 species in the

published data. A reasonable similarity measure should

reveal this distinctness. However, the similarity measure

Eq. 6, the ratio of entropies, gives an inflated similarity

value of 0.95 for the two communities using the Gini�/

Simpson index. Most ecologists looking at this 95%

similarity value would wrongly assume that the forest is

homogeneous in the vertical dimension and that the

canopy and understory communities are very similar in

species composition. In contrast Eq. 7, the ratio of true

diversities, shows that the average community really

shares not 95% but only 59% of the total diversity, using

the Gini�/Simpson index. This value is close to the

theoretical minimum of 50% for two completely dissim-

ilar equally-weighted communities, showing that the

canopy and understory communities are really very

distinct from each other. The authors of the butterfly

study used additional methods to demonstrate the

importance of the canopy/understory distinction, con-

cluding that ‘‘the vertical dimension is a major structural

component in tropical forest butterfly communities’’

(Engen et al. 2002). The similarity measure based on

entropies, Eq. 6, hides this structure while the similarity

measure based on true diversities, Eq. 7, highlights it.

Additive partitioning studies which rely exclusively on

Eq. 6 for the evaluation of their results need to be re-

examined using the corrected measure, Eq. 7.

Other useful similarity measures can be derived from

Eq. 7 for use with equally-weighted samples or commu-

nities of a region. The minimum value of Eq. 7 for N

equally-weighted samples or communities, 1/N, ob-

viously depends on the number of samples or commu-

nities in the region. The measure can be transformed

onto the interval [0,1] to facilitate comparisons between

regions with different numbers of samples or commu-

nities. Since qD(Ha)/qD(Hg) goes from 1/N to 1, the

linear transformation

S�[qD(Ha)=
qD(Hg)�1=N]=[1�1=N] (8)

ranges from 0 to 1. This new measure equals zero when

all the samples or communities are completely distinct,

equals unity when all are identical, and is linear in the

proportion of total diversity contained in the average

sample or community. When this measure is applied to

two equally-weighted samples or communities, it sim-

plifies to the Jaccard index (Jaccard 1902) when used

with species richness, and to the Morisita�/Horn index

(Horn 1966) when used with the Gini�/Simpson index.

[Proof 5] For the butterfly data mentioned above, it gives

0.18 with the Gini�/Simpson index.

Sometimes the focus of a study is not on the amount

of homogeneity or shared diversity in a region but on the

amount of species overlap between two communities.

This requires a direct comparison between communities,

whose original statistical weights are then irrelevant and
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are taken to be equal in the calculation of alpha, beta,

and gamma. The most useful kind of overlap measure

has been called a ‘‘true overlap measure’’ (Wolda 1981):

when two communities each consist of S equally-

common species, with C shared species, a true overlap

measure gives the value C/S, the fraction of one

community which overlaps with the other. A true overlap

measure for HCDT entropies can be derived from Eq. 7,

since the (q-1)th power of the ratio of alpha to gamma

diversities is linear in C/S. We can transform that ratio

onto the interval [0,1] to obtain the true measure of

overlap:

Overlap (of order q)

�f[qD(Ha)=
qD(Hg)]

q�1�[1=2]q�1g=f1�[1=2]q�1g

(9)

[Proof 6] This yields the Sørensen index (Sørensen 1948)

when q�/0, the Horn index of overlap (Horn 1966) in the

limit as q approaches 1, and the Morisita�/Horn index

(Horn 1966) when q�/2. [Proof 7] For the butterfly data

the overlap between canopy and understory commu-

nities using the Gini-Simpson index is 18%. For order 2

diversities Eqs. 8 and 9 necessarily give the same values.

For q other than 2.0 the values will differ between Eq. 8

and 9.

Conclusions

The confusion between entropy and diversity fuels much

of the debate about diversity measures, obscures patterns

in field studies, and hinders theoretical progress. Most

diversity indices are entropies, not diversities, and their

mathematical behavior usually does not correspond to

biologists’ theoretical or intuitive concept of diversity.

All indices can be transformed into true diversities,

which possess a uniform set of mathematical properties

that accurately capture the diversity concept.

Conversion of indices to true diversities facilitates

interpretation of results. If researchers find a pre-treat-

ment Shannon entropy of 4.5 and a post-treatment

Shannon entropy of 4.1, they usually go no further than

to say that the difference is small, and then fall back on

Table 2. Canopy and understory butterfly communities in a tropical rain forest (modified from DeVries and Walla 2001). Butterfly
species, along with their number of captures in the canopy and understory, are listed in descending order of abundance and include
the 74 most common species (those with 8 or more captures). The canopy and understory butterfly communities are not similar to
each other; nearly all species are much more abundant in one community than in the other.

Species Canopy Understory Species Canopy Understory

Historis acheronta 1882 26 Callicore hesperis 44 1
Panacea prola 1028 535 Opsiphanes invirae 40 5
Nessaea hewitsoni 19 984 Baeotus deucalion 40 1
Morpho achilles 5 751 Archaeprepona licomedes 1 39
Taygetis sp. 1 8 621 Taygetis mermeria 0 40
Colobura dirce 273 250 Memphis arachne 36 1
Bia actorion 8 426 Mycelia capenas 31 5
Catoblepia berecynthia 3 336 Paulogramma pyracmon 32 0
Historis odius 299 11 Diarthria clymena 29 0
Catoblepia xanthus 4 289 Catoblepia soranus 0 27
Panacea divalis 244 21 Chloreuptychia herseis 0 27
Caligo idomenius 2 242 Catonephele numilia 25 1
Catonephele acontius 176 67 Cithaerias aurorina 0 21
Callicore hystapes 201 1 Chloreuptychia arnaea 0 19
Panacea regina 182 14 Cissia erigone 0 19
Caligo eurilochus 2 184 Pareuptychia binocula 1 17
Memphis florita 136 33 Caligo teucer 0 17
Batesia hypochlora 36 113 Chloreuptychia hewitsonii 0 17
Morpho menelaus 1 131 Memphis polycarmes 15 1
Archaeprepona demophon 63 63 Mageuptychia nr. helle-1 9 7
Hamadryas arinome 108 14 Hamadryas feronia 15 0
Mageuptychia antonoe 117 3 Archaeprepona demophoon 14 0
Smyrna blomfildia 100 1 Hamadryas chloe 2 12
Tigridia acesta 29 65 Pierella lena 0 14
Opsiphanes cassina 72 18 Cissia myncea 5 8
Callicore cyllene 81 0 Mageuptychia analis 6 7
Haetera piera 0 77 Pierella astyoche 0 13
Prepona laertes 74 2 Taygetis virgilia 0 13
Hamadryas amphinome 72 3 Cissia proba 0 12
Hamadryas laodamia 60 0 Pareuptychia ocirrhoe 1 11
Caligo placidianus 0 57 Agrias sardanapolis 10 0
Opsiphanes quiteria 8 49 Baeotus amazonicus 9 0
Zaretis itys 50 4 Cissia terrestris 3 6
Temenis laothe 49 3 Prepona pylene 8 0
Taygetis sp. 3 0 51 Antirrhea avernus 0 8
Archaeprepona amphimachus 5 44 Chloreuptychia tolumnia 1 7
Taygetis sp. 2 0 49 Taygetis valentina 0 8
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statistical tests to see if the difference is statistically

significant. It is more informative to give the diversities

instead of the entropies; in this case, the diversities are 90

species and 60 species respectively. It is now easy to see that

the difference between pre- and post-treatment diversities

is not small but enormous. The question of the real

magnitude of the drop is important and is separate from its

statistical significance. It is essential to have informative,

interpretable diversity and similarity measures, so we can

go beyond mere statistical conclusions.

It is especially useful to convert to true diversities when

dealing with multiple kinds of indices. If a community has

a species richness of 100, a Shannon entropy of 3.91 and

Gini�/Simpson index of 0.967, it is not obvious how these

compare. Converting to diversities gives 100, 50 and 30

species; the big drops in the diversities as q increases

indicate a high degree of dominance in the community. If

the communities had been completely without dominance

(all species equally likely) the diversities would have been

100 species for all values of q.

Shannon beta entropy is additive but this forces

Shannon beta diversity to be multiplicative; both sides

in the debate over the additivity or multiplicativity of

beta are correct, but one side is talking about entropy

while the other is talking about diversity.

Each diversity index has unique properties that are

useful for specific applications (this is the real point of

Hurlbert’s criticism of diversity as a unified concept).

The present paper is not intended to argue against the

appropriate use of raw indices in these index-specific

applications. However, since raw diversity indices exhibit

a wide variety of mathematical behaviors, they cannot all

give reasonable results when directly inserted into a

general diversity equation or formula. Converting raw

indices to true diversities (Hill numbers) makes possible

the construction of meaningful index-independent gen-

eral equations, measures, or formulas involving diversity.
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Appendix 1. Proofs

Note: H represents any generalized entropy or diversity

index.

Proof 1

If /HðaS

i�1(pi)
qÞ is continuous and monotonic (hence

invertible) and has a value x, then the algorithm in the

text to find its diversity gives:

H

�XD

i�1

(1=D)q

�
�x

H(D�(1=D)q)�(x)

(1=D)(q�1)�H�1(x)

D�[1=(H�1(x))]1=(q�1)

Since x�HðaS

i�1(pi)
qÞ; H�1(x)�H�1ðHðaS

i�1(pi)
qÞÞ�

/a
S

i�1(pi)
q
, so D is independent of the function H(. . .)

and the diversity associated with any such diversity index

can be expressed as:

D�
�

1=
�XS

i�1

(pi)
q

��1=(q�1)

�
�XS

i�1

(pi)
q

�1=(1�q)

Proof 2

If the original community had a
S

i�1(pi)
q

equal to x,

doubling each element of the sum while halving each

probability is equivalent to replacing each element pi
q by

(21�q)(pi
q). Thus the sum for the doubled system is

(21�q)(x). Any monotonic function H/ðaS

i�1(pi)
qÞ gives a

diversity of ðaS

i�1(pi)
qÞ1=1�q

, by Proof 1. Thus the

diversity of the doubled system is [(21�q)(x)] 1/(1�q)�/

2[x 1/(1�q)]�/2x.

Proof 3

As shown by Lande (1996) for concave diversity

measures, HaB/�/Hg; Ha/Hg is maximal and equals

unity when all communities are identical, and for a

given value of Ha, Ha/Hg is minimal when all commu-

nities are distinct. Any Ha/Hg is therefore bounded

between these values.The following proofs show that

the lower bound approaches unity as alpha becomes

high; hence all Ha/Hg approach unity when alpha is

high.

Shannon case. When all communities are distinct, only

one of the pij in each term of Hg,

�
XS

i�1

(w1pi1�w2pi2�. . .) ln (w1pil�w2pi2�. . .)

is nonzero, so Hg separates into

�
XS

i�1

w1pi1 ln (w1pi1)��
XS

i�1

w2pi2 ln (w2pi2)�. . .

which simplifies to

�w1

XS

i�1

(pi1)(ln w1�ln pi1)�

�w2

XS

i�1

(pi2)(ln w2�ln pi2)�. . .

��w1

XS

i�1

pi1 ln pi1�(�w1 ln w1)
XS

i�1

pi1�

�w2

XS

i�1

pi2 ln pi2�(�w2 ln w2)
XS

i�1

pi2�. . .

�w1H1�(�w1 ln w1)(1)�w2H2�(�w2 ln w2)(1)

�Ha�Hw

where Hw is the entropy of the community weights. Thus

Ha/Hg for completely distinct communities is Ha/(Ha�/

Hw) or 1/(1�/Hw/Ha). Hw is fixed by the weights so as Ha
becomes large, Hw/Ha approaches zero and Ha/Hg
approaches 1.

Gini�/Simpson case. When all communities are distinct

(no shared species) only one of the pij in each term of

Hg,

1�
XS

i�1

(w1pi1�w2pi2�. . .)2;

is nonzero, so Hg separates into

1�
�XS

i�1

w2
1p2

i1�
XS

i�1

w2
2p2

i2�. . .

�

and so Ha/Hg can be written

�
1�

�XS

i�1

w1p2
i1�

XS

i�1

w2p2
i2�. . .

��
=

�
1�

�XS

i�1

w2
1p2

il�
XS

i�1

w2
2p2

i2�. . .

��

where the numerator is the alpha component of the

Gini�/Simpson index. As the alpha diversity becomes

large, each of the sums making up the numerator

approach zero. The same sums appear in the denomi-

nator (though with different weight coefficients) so

all the summations in both the numerator and

denominator approach zero. Then Ha/Hg is (1�/o)/
(1�/d) and as o and d approach zero this approaches

unity.
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Proof 4

Proof 1 can be used to write the desired inequality as

1=N5 qD(Ha)=
qD(Hg)

�

�
(1=N)

�XS

i�1

p
q
i1�

XS

i�1

p
q
i2�. . .

�
=

XS

i�1

[(1=N)(pi1�pi2�. . .)]q

�1=(1�q)

which can be rewritten

15

��XS

i�1

p
q
i1�

XS

i�1

p
q
i2�. . .

�
=

XS

i�1

[(pi1�pi2�. . .)]q

�1=(1�q)

Case q �/1. The above inequality can then be rewritten

XS

i�1

[(pi1�pi2�. . .)]q
]

�XS

i�1

p
q
i1�

XS

i�1

p
q
i2�. . .

�

with the inequality reversing because we are taking the

reciprocal of both sides. Each term (pi1�/pi2�/. . .)q of the

left-hand summation is greater than or equal to pi1
q�/

pi2
q�/ . . . since (x)q is a convex function, so the inequality

is true.

Case qB/1. For this case the proof is the same; the

inequality can be written

XS

i�1

[(pi1�pi2�. . .)]q
5

�XS

i�1

p
q
i1�

XS

i�1

p
q
i2�. . .

�

and this is true term by term since for this case (x)q is a

concave function.

Case q�/1. The inequality can be proven by noting that

the limit of qD(Ha)/qD(Hg) as q approaches 1 exists, so
qD(Ha)/qD(Hg) is continuous at q�/1; the above inequal-

ity holds since it holds for q�/1 and qB/1.

We prove equality when the communities are

completely distinct by noting that for q not equal to 1

the gamma diversity for distinct communities separates

into

�
(1=N)q

XS

i�1

p
q
i1�(1=N)q

XS

i�1

p
q
i2�. . .

�1=(1�q)

so the ratio qD(Ha)/ qD(Hg) becomes

�
1=N

�XS

i�1

p
q
i1�

XS

i�1

p
q
i2�. . .

�
=

�
(1=N)q

XS

i�1

p
q
i1�(1=N)q

XS

i�1

p
q
i2�. . .

��1=(1�q)

�1=N

For q�/1, 1D(H) is exp(H) by the algorithm in the text

and also by taking the limit of the result of Proof 1 as q

approaches 1. When all communities are distinct and

equally weighted, Hg separates into

�
XS

i�1

(1=N pi1) ln (1=N pi1)��
XS

i�1

(1=N pi2)

� ln (1=N pi2)�. . .

which simplifies to

�1=N
XS

i�1

(pi1)(ln 1=N�ln pi1)�

�1=N
XS

i�1

(pi2)(ln 1=N�ln pi2)�. . .

��1=N
XS

i�1

pi1 ln pi1�(�1=N ln 1=N)
XS

i�1

pi1�

�1=N
XS

i�1

pi2 ln pi2�(�1=N ln 1=N)
XS

i�1

pi2�. . .

�(1=N)H1�(�1=N ln 1=N)(1)

�(1=N)H2�(�1=N ln 1=N)(1)�. . .

�Ha�N(�1=N ln 1=N)�Ha�ln N

so 1D(Hg)�/ exp (Ha�/ln N)�/N exp (Ha).

Hence the ratio 1D(Ha)/1D(Hg)�/ exp (Ha)/N exp (Ha)�/

1/N.

Proof 5

[qD(Ha)/qD(Hg)�/1/N]/[1�/1/N] for two equally-

weighted communities is [(qla=
qlg)

1=(1�q)�0:5]=[0:5]:
For q�/0 this becomes

��
(0:5)

XS

i�1

p0
i1�(0:5)

XS

i�1

p0
i2

�
=

�XS

i�1

[0:5 pi1�0:5 pi2)
0]�0:5

�
=f0:5g

�f[0:5 N1�0:5 N2]=[Ntot]�0:5g=f0:5g
�f[N1�N2]�Ntotg=fNtotg
�(Nshared)=(N1�N2�Nshared)�Nshared=Ntot

which is the Jaccard index.

For q�/2 the measure can be written

�
��XS

i�1

(0:5 pi1�0:5 pi2)
2

�
=
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�
(0:5)

XS

i�1

p2
i1�(0:5)

XS

i�1

p2
i2

�
�0:5

�
=f0:5g

�
�XS

i�1

(pi1�pi2)
2

�
=

�XS

i�1

p2
i1�

XS

i�1

p2
i2

�
�1

�
�XS

i�1

(p2
i1�p2

i2�2 pi1pi2)�
XS

i�1

p2
i1�

XS

i�1

p2
i2

�
=

�XS

i�1

p2
i1�

XS

i�1

p2
i2

�

�
�XS

i�1

2 pi1pi2

�
=

�XS

i�1

p2
i1�

XS

i�1

p2
i2

�

which is the Morisita�/Horn index for two equally-

weighted communities.

Proof 6

If each community has S equally-common species and

they share C species, qDg equals

[(2S�2C)(1=2S)q�C(1=S)q]1=(1�q)

and qDa equals

�
�
(0:5)

XS

i�1

p
q
i1�(0:5)

XS

i�1

p
q
i2

�1=(1�q)

�[(0:5) S(1=S)q�(0:5) S(1=S)q]1=(1�q)

�[S(1=S)q]1=(1�q)�S:

Then the similarity measures is

[(qDa=
qDg)

q�1�(1=2)q�1]=[1�(1=2)q�1]

�f[ð2S�2CÞ(1=2S))q�C(1=S)q]=

[S1�q]�21�qg=f1�21�qg
�f[(2S�2C)(1=2)q(1=S)�C=S)]�21�qg=f1�21�qg
�f[(2S(1=2)q(1=S)�2C(1=2)q(1=S))�C=S]�21�qg

=f1�21�qg
�f[21�q�21�q(C=S)�C=S)]�21�qg=f1�21�qg
�fC=S (1�21�q)g=f1�21�qg
�C=S:

Proof 7

For q�/0 the measure is

��XS

i�1

(0:5 pi1�0:5 pi2)
0

�
=

�
(0:5)

XS

i�1

p0
i1�(0:5)

XS

i�1

p0
i2

�

�2

�
=f1�2g

��ffNtotg=f[N1�N2]=[2]g�2g

��[Ntot�(N1�N2)]=[(N1�N2)=2]

�[(N1�N2)�Ntot]=[(N1�N2)=2]

�[Nshared]=[(N1�N2)=2]

which is the Sørensen index.

For the Shannon case it is necessary to take the limit

of the measure as q approaches unity:

��XS

i�1

(0:5 pi1�0:5 pi2)
q

�
=

�
0:5

XS

i�1

p
q
i1

�0:5
XS

i�1

p
q
i2

�
�21�q

�
=f1�21�qg:

The numerator and denominator approach zero as q

approaches 1, so L’Hospital’s rule applies and the

quotient of derivatives is

��XS

i�1

(0:5 pi1�0:5 pi2)
q

ln (0:5 pi1�0:5 pi2)

�

�
�

0:5
XS

i�1

p
q
i1�0:5

XS

i�1

p
q
i2

��1

�(�1)

�
0:5

XS

i�1

p
q
i1�0:5

XS

i�1

p
q
i2

��2

�
�

0:5
XS

i�1

p
q
i1 ln pi1�0:5

XS

i�1

p
q
i2 ln pi2

�

�
�XS

i�1

(0:5 pi1�0:5 pi2)
q

�

�[21�q ln 2]

�
=f21�q ln 2g

which, in the limit as q approaches 1, equals

�XS

i�1

(0:5 pi1�0:5 pi2) ln (0:5 pi1�0:5 pi2)

�0:5
XS

i�1

pi1 ln pi1�0:5
XS

i�1

pi2 ln pi2�ln 2

�
=[ln 2]

which is the Horn index of overlap for equally-weighted

communities.

The result for q�/2 follows from Proof 5 since, for

q�/2,

[(qDg=
qDa)

q�1�(1=2)q�1]=[1�(1=2)q�1]

�[(qDa=
qDg)

1=(1�q)�0:5]=[0:5]:

Appendix 2. Definitions of alpha and beta

The alpha and beta components of Shannon entropy

are well-understood; their analogues are widely used in

many disciplines and backed up by an immense amount

of mathematical theory. They possess the following

important properties:
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1) Alpha and beta both use the same metric.

2) Alpha can never exceed gamma.

3) If all the communities in a region have the same

Shannon entropy, say H0, then the alpha entropy of

the region is H0.

4) Alpha and beta are independent.

The importance of Properties 1 and 2 has been

emphasized by Lande (1996) and Lewontin (1972).

Property 3 expresses, in the most noncommital and

general way possible, the notion that alpha is in some

sense an average of the diversity indices of the individual

communities. Property 4 is implicit in all uses of the

concepts of alpha and beta; a low value of alpha should

not, by itself, force beta to be high, and vice versa.

In biology the definitions of alpha and beta for

Shannon entropy,

Ha�w1H1�w2H2�. . . (A1)

Ha�Hb�Hg; (A2)

are often carried over directly to the Gini�/Simpson

index (Lande 1996, Veech et al. 2002). However, there is

an essential difference between the Shannon entropy and

the Gini�/Simpson index; the Shannon entropy is not

bounded above, while the Gini�/Simpson index always

lies between zero and one. This means that both the

alpha and gamma Gini�/Simpson indices have values

very close to unity when communities are highly diverse.

Therefore whenever alpha is high, beta defined through

Eq. A2 must always be close to zero. Alpha and beta

defined by this equation are not independent but

inversely related. This violation of property 4 is graphi-

cally demonstrated in Fig. A1, which contrasts the

behavior of the Shannon and Gini�/Simpson beta

components defined by Eq. A2.

Property 1 is also violated when beta is defined by

Eq. A2. To understand what it means for alpha and beta

to have the same metric, consider how Shannon entropy

works. When there are two equally likely alternatives,

Shannon entropy (using natural logarithms) is always

0.6931; whether this number comes from a calculation of

alpha or of beta makes no difference in its interpretation.

If there are two distinct equally-likely species in each

community, alpha will be 0.6931, and if there are two

completely distinct equally likely comunities in the

region, beta will be 0.6931. Alpha and beta share the

same metric and so their contributions to total diversity

can be reasonably compared (by converting them to true

diversities as shown in the main text). When the Gini�/

Simpson index is applied to a system with two equally-

likely alternatives, it gives a value of 0.5. Yet if beta is

defined through Eq. A2, when there are two equally-

likely completely distinct communities beta does not

usually equal 0.5. In fact beta has no fixed value in this

situation; its value depends on alpha and cannot be

interpreted without knowledge of alpha.

Consider any two distinct communities with no species

in common, such as communities A and B in Table A1.

Suppose a region consists of communities A and B with

equal statistical weights. The alpha Shannon entropy is

0.9764 and the beta Shannon entropy is 0.6931; the true

beta diversity is therefore exp (0.6931) which is 2.00,

correctly indicating that there are two distinct commu-

nities. One could do the same calculation for commu-

nities A and C, obtaining a different alpha Shannon

entropy, 1.488, but the same beta Shannon entropy,

0.6931 since these are also two distinct communities. The

same could be done for communities B and C, or any

other pair of completely distinct communities; regardless

of their alpha, their beta Shannon entropy will always be

0.6931. Beta is independent of alpha and characterizes

the degree of overlap of the communities, using the same

metric as alpha. (Had there been two equally-common

species in each community, alpha would have been

0.6931; the same metric applies to both.)

Doing the same calculations with the Gini�/Simpson

index gives a ‘‘beta’’ (as defined by Eq. A2) of 0.2050 for

communities A and B, but 0.1550 for communities A

and C, and 0.1000 for communities B and C. The degree

of overlap is confounded with the alpha diversity.

Converting the ‘‘beta’’ values to true diversities yields

1.258, 1.183, and 1.111, which do not have obvious

interpretations.

It can be proven that the proper way to combine two

independent components of a Gini�/Simpson index is

not through Eq. A2 but through

Ha�HaHb�Hb�Hg (A3)

0.25 0.5 0.75 1.0

Alpha

1.0

0.75

0.5

0.25

B
et

a

Beta component of
Shannon entropy

“Beta” component of Gini–
Simpson index using

additive definition

Beta vs Alpha

Fig. A1. Beta versus alpha for two equally-weighted commu-
nities with no species in common. The definition Hb�/Hg�/Ha
yields a beta component which is independent of the alpha
component when it is applied to the Shannon entropy, but not
when it is applied to the Gini�/Simpson index.
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(Aczel and Daroczy 1975, Tsallis 2001, Keylock 2005).

This expression not only allows alpha and beta to be

independent, but also ensures that alpha and beta use

the same metric, as demonstrated below. Comparison of

Eq. A2 and A3 shows that the ‘‘Hb’’ calculated by Eq.

A2 is really not Hb but Hb�/HbHa, explaining the shape

of the graph of Gini�/Simpson ‘‘Hb’’ in Fig. A1 (its

y-intercept is Hb and its slope is �/Hb).

It remains to find the correct expression for Gini�/

Simpson alpha, given its independence from beta. The

alpha Gini-Simpson index can be written 1�/la, beta

can be written 1�/lb, and gamma can be written 1�/lg.
Then Eq. A3 can be written:

(1�la)�(1�la)(1�lb)�(1�lb)�(1�lg) (A4)

which simplifies to

la�lg=lb: (A5)

The gamma component Hg is by definition the Gini�/

Simpson index applied to the pooled communities, so that

lg�
XS

i�1

[(w1pi1�w2pi2�. . .)2]: (A6)

When all communities are completely distinct (no shared

species), this reduces to

lg distinct�
XN

j�1

w2
j lj (A7)

where lj is pij
2 for the jth community. Inserting this result

into Eq. A5 gives an expression for la when all commu-

nities are distinct:

la distinct�(w2
1l1�w2

2l2�. . .)=lb distinct: (A8)

When all communities have identical values of l, so that

lj�/l for all j,la distinct must also equallby property 3 (the

requirement that the alpha component is some kind of

‘‘average’’ of the diversities of the individual commu-

nities). Therefore for this case

l�(w2
1l�w2

2l�. . .)=lb distinct (A9)

and by factoring out l, the value of lb distinct is deter-

mined:

lb distinct�(w2
1�w2

2�. . .) (A10)

Equation A10 can be substituted into Eq. A8 to yield an

expression for qla:

la�(w2
1l1�w2

2l2�. . .)=(w2
1�w2

2�. . .): (A11)

Because la is by assumption independent of the beta

component (which measures the distinctness of the

communities), this result cannot depend on the beta

component and must therefore apply even when the

communities are not distinct. The alpha component of

the Gini�/Simpson index is therefore:

Ha�1�[(w2
1l1�w2

2l2�. . .)=(w2
1�w2

2�. . .)]: (A12)

or, in terms of Hj,

Ha�(w2
1H1�w2

2H2�. . .)=(w2
1�w2

2�. . .): (A13)

This turns out to be the same definition of alpha

(conditional) entropy recently proposed for this index in

physics (Abe and Rajagopal 2001). Note that when

community weights are all equal, this reduces to the

normal biological definition of the alpha Gini�/Simpson

index.

These new results can be applied to the communities

in Table A1. For all pairs of distinct communities,

regardless of the value of Ha, Hb is now 0.500, as

expected. Converting this to a true diversity gives 2.00 in

each case, just as with the Shannon entropy, correctly

indicating that there are two distinct communities in

Table A1. Alpha, beta, and gamma indices for various hypothetical regions each consisting of two equally-weighted completely
distinct communities. Alpha differs between pairs of communities, but beta Shannon entropy is independent of alpha and is
identical for any pair of equally-weighted completely distinct communities; Shannon beta diversity always equals 2.00 for such pairs.
The Gini�/Simpson index behaves irregularly when beta is defined by Eq. A2 but behaves like Shannon entropy when beta is
properly defined by Eq. A3.

Species: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Community A: 0.6 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Community B: 0 0 0.3 0.2 0.4 0.1 0 0 0 0 0 0 0 0 0 0
Community C: 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A�/B A�/C B�/C

Shannon Ha 0.9764 1.487 1.791
Shannon Hg 1.6696 2.181 2.484
Gini�/Simpson Ha 0.5900 0.6900 0.8000
Gini�/Simpson Hg 0.7950 0.8450 0.9000
Shannon Hb�/Hg�/Ha 0.6931 0.6931 0.6931
1D(Hb)�/exp(Hb) 2.000 2.000 2.000
Gini�/Simpson ‘‘Hb’’ from Hg�/Ha 0.2050 0.1550 0.1000
2D(‘‘Hb’’)�/1/(1-‘‘Hb’’) 1.258 1.183 1.111
Gini�/Simpson Hb from Eq. A3 0.5000 0.5000 0.5000
2D(Hb)�/1/(1�/Hb) 2.000 2.000 2.000
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each region. Alpha and beta are now truly measured in

the same metric, and alpha is independent of beta, so

beta can be interpreted on its own. In addition, the

numbers equivalents of Ha, Hb, and Hg now follow

Whittaker’s law, alpha diversity times beta diversity

equals gamma diversity, just as in the Shannon case.

(This follows at once from Eq. A5 and the transforma-

tion function D(HGini �Simpson)�/1/l.)

When weights are equal, therefore, Properties 1�/4 are

all satisfied by the components of the Gini�/Simpson

index, as long as its Hb is defined by Eq. A3. In this case

the alpha component is the same as that traditionally

used in biology. However, when community weights are

unequal, the alpha component defined by Eq. A12 (the

only definition that makes alpha and beta independent)

is sometimes greater than the gamma component. For

example, let community A, with weight 0.7, contain

three species with frequencies {0.5, 0.2, 0.3} and com-

munity B, with weight 0.3, contain the same species with

frequencies {0.9, 0.05, 0.05}. Alpha is 0.55 while gamma

is 0.54. This violates property 2. Olszewski (2004), using

a very different approach, has also noted counterintui-

tive behavior in this index when community weights are

unequal (see his Fig. 6). The unavoidable conclusion of

the present derivation is that the Gini�/Simpson index

cannot be decomposed into meaningful alpha and beta

components (i.e. components that possess Properties 1�/

4) when the community weights are unequal. A paper in

preparation will generalize the above considerations to

most non-Shannon diversity indices.

For additional explanation and worked examples, see

the author’s website, www.loujust.com.
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